Homework 1: Solutions to exercises not appearing in Pressley (also 1.2.3).

Math 120A

- (1.11) (i) Let $\gamma(t)=(1+\cos t, \sin t(1+\cos t)$. We set $x=1+\cos t$. This implies that $\sin t= \pm \sqrt{2 x-x^{2}}$. Hence we have $y= \pm x \sqrt{2 x-x^{2}}$, or $y^{2}=x^{2}\left(2 x-x^{2}\right)$ as a Cartesian equation for the curve.
(ii) Let $\gamma(t)=\left(t^{2}+t^{3}, t^{3}+t^{4}\right)$. We first observe that $y=t x$. To exploit this relationship, consider $x^{4}=x\left(x^{3}\right)=\left(t^{2}+t^{3}\right)\left(x^{3}\right)=t^{2} x^{3}+t^{3} x^{3}=y^{2} x+y^{3}$. Ergo the points of our parametrization satisfy $x^{4}=y^{2} x+y^{3}$. To see that the parametrized curve is the entire set of solutions to this equation, first note that if $x=0$, then $y=0$. If (x, y) is a solution to the equation such that $x \neq 0$, write $y=t x$, where t is whatever constant makes this true. Then solving for x shows there is a unique solution to the equation that satisfies $y=t x$ for any particular t, and it is $\left(t^{2}+t^{3}, t^{3}+t^{4}\right)$.
- (1.12) (i) The tangent vector is $\dot{\gamma}(t)=\left(-\sin t, \cos t(1+\cos t)-\sin ^{2} t\right)=(-\sin t, \cos t+$ $\left.\cos ^{2} t-\sin ^{2} t\right)$. This vanishes when $t=n \pi$ for n odd.
(ii) The tangent vector is $\dot{\gamma}(t)=\left(2 t+3 t^{2}, 3 t^{2}+4 t^{3}\right)$, which vanishes when both $t(2+$ $3 t)=0=t^{2}(3+4 t)$. This happens only when $t=0$.
- (1.15) We have $\gamma(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$, so $\dot{\gamma}(t)=\left(e^{t}(\cos t-\sin t), e^{t}(\sin t+\cos t)\right)$. Their dot product is then $\gamma(t) \cdot \dot{\gamma}(t)=e^{2 t}\left(\cos ^{2} t-\cos t \sin t+\sin ^{2} t+\cos t \sin t\right)=e^{2} t$. Now, $\|\gamma(t)\|=e^{t}$, and $\|\dot{\gamma}(t)\|=\sqrt{e^{2} t\left(\cos ^{2} t-2 \sin t \cos t+\sin ^{2} t+\sin ^{2} t+2 \sin t \cos t+\cos ^{t}\right)}=$ $\sqrt{2 e^{2 t}}$. Hence if the angle between $\gamma(t)$ and $\dot{\gamma}(t)$ is θ, we have $\cos \theta=\frac{\gamma(t) \cdot \dot{\gamma}(t)}{\|\gamma(t)\| \dot{\gamma}(t) \|}=\frac{1}{\sqrt{2}}$. Ergo $\theta=\frac{\pi}{4}$ (where the sign is determined from a look at the graph).
- (1.2.3) Our curve is $\gamma(\theta)=(r(\theta) \cos \theta, r(\theta) \sin \theta)$, for r a smooth function. The tangent vector $\dot{\gamma}(\theta)=\left(r^{\prime}(\theta) \cos \theta-r(\theta) \sin \theta, r^{\prime}(\theta) \sin \theta+r(\theta) \cos \theta\right)$. For γ to be regular, we need both components of the tangent vector to be nonzero everywhere. A computation shows that $\|\dot{\gamma}(\theta)\|^{2}=r(\theta)^{2}+r^{\prime}(\theta)^{2}$, so the tangent vector can only be zero if $r=r^{\prime}=0$ at some θ; as long as this never happens, the curve is regular. For γ to be unit speed, we need $r(\theta)^{2}+r^{\prime}(\theta)^{2}=1$. An obvious solution is $r \equiv \pm 1$, which gives the unit circle with some orientation. For the other solution, we separate variables to solve the
differential equation:

$$
\begin{aligned}
1 & =\left(\frac{d r^{2}}{d \theta}\right)+r^{2} \\
\pm \sqrt{1-r^{2}} & =\frac{d r}{d \theta} \\
\pm d \theta & =\frac{d r}{\sqrt{1-r^{2}}} \\
\pm \int d \theta & =\int \frac{d r}{\sqrt{1-r^{2}}} \\
\pm \theta+C & =\sin ^{-1}(r) \\
\sin (\pm \theta+C) & =r
\end{aligned}
$$

Ergo we have $\gamma(t)=(\sin (\pm \theta+C) \cos \theta, \cos (\pm \theta+C) \sin \theta)$. This is a circle of radius $\frac{1}{2}$. For $\theta+C$, the center is $\left(\frac{1}{2} \sin C, \frac{1}{2} \cos C\right)$; for theta $+C$, the center is $\left(\frac{1}{2} \sin C,-\frac{1}{2} \cos C\right)$ (This can be checked by showing that the parametrization satisfies the equation of the appropriate circle. A graphical argument was also ok.)

- Question 4. We see that

$$
\begin{aligned}
\frac{\partial f}{\partial x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{0-0}{h} \\
& =0
\end{aligned}
$$

Similarly, $\frac{\partial f}{\partial y}(0,0)=0$. However, if $\left\{\left(x_{n}, y_{n}\right)\right\}$ is any sequence of points such that $x_{n}=y_{n}^{2}$ and $y_{n} \rightarrow 0$, then $f\left(x_{n}, y_{n}\right)=\frac{y_{n}^{4}}{2 y_{n}^{4}}=\frac{1}{2}$, so as $n \rightarrow \infty, f\left(x_{n}, y_{n}\right) \rightarrow \frac{1}{2} \neq f(0,0)$. Ergo f is not continuous.

